A Hierarchical Contextual Attention-based GRU Network for Sequential Recommendation

نویسندگان

  • Qiang Cui
  • Shu Wu
  • Yan Huang
  • Liang Wang
چکیده

Sequential recommendation is one of fundamental tasks for Web applications. Previous methods are mostly based on Markov chains with a strong Markov assumption. Recently, recurrent neural networks (RNNs) are getting more and more popular and has demonstrated its effectiveness in many tasks. The last hidden state is usually applied as the sequence’s representation to make recommendation. Benefit from the natural characteristics of RNN, the hidden state is a combination of long-term dependency and short-term interest to some degrees. However, the monotonic temporal dependency of RNN impairs the user’s short-term interest. Consequently, the hidden state is not sufficient to reflect the user’s final interest. In this work, to deal with this problem, we propose a Hierarchical Contextual Attention-based GRU (HCA-GRU) network. The first level of HCA-GRU is conducted on the input. We construct a contextual input by using several recent inputs based on the attention mechanism. This can model the complicated correlations among recent items and strengthen the hidden state. The second level is executed on the hidden state. We fuse the current hidden state and a contextual hidden state built by the attention mechanism, which leads to a more suitable user’s overall interest. Experiments on two realworld datasets show that HCA-GRU can effectively generate the personalized ranking list and achieve significant improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geo-Teaser: Geo-Temporal Sequential Embedding Rank for Point-of-interest Recommendation

Point-of-interest (POI) recommendation is an important application for location-based social networks (LBSNs), which learns the user preference and mobility pattern from check-in sequences to recommend POIs. Previous studies show that modeling the sequential pattern of user check-ins is necessary for POI recommendation. Markov chain model, recurrent neural network, and the word2vec framework ar...

متن کامل

Sequential Monte Carlo Bandits

In this paper we propose a flexible and efficient framework for handling multi-armed bandits, combining sequential Monte Carlo algorithms with hierarchical Bayesian modeling techniques. The framework naturally encompasses restless bandits, contextual bandits, and other bandit variants under a single inferential model. Despite the model’s generality, we propose efficient Monte Carlo algorithms t...

متن کامل

A Recurrent Neural Network Based Recommendation System

6 Recommendation systems play an extremely important role in e-commerce; 7 by recommending products that suit the taste of the consumers, e-commerce 8 companies can generate large profits. The most commonly used 9 recommender systems typically produce a list of recommendations through 10 collaborative or content-based filtering; neither of those approaches take 11 into account the content of th...

متن کامل

GT-SEER: Geo-Temporal SEquential Embedding Rank for Point-of-interest Recommendation

Point-of-interest (POI) recommendation is an important application in location-based social networks (LBSNs), which learns the user preference and mobility pattern from check-in sequences to recommend POIs. However, previous POI recommendation systems model check-in sequences based on either tensor factorization or Markov chain model, which cannot capture contextual check-in information in sequ...

متن کامل

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.05114  شماره 

صفحات  -

تاریخ انتشار 2017